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Figure 1. 3D anaglyph visualization of stereo videos produced by our method. Our framework, Eye2Eye, takes as input a monocular
video representing a right-eye view (top), and produces a left-eye video (visualized in the anaglyph on the bottom), enabling stereoscopic
viewing using 3D glasses or a VR headset. Our method directly produces the new viewpoint, avoiding steps like explicit depth estimation
and warping, and thus can plausibly handle challenging scenes with specular or transparent surfaces, such as the wine glass in the left
example or the shiny floor in the right example, where assumptions of a single well-defined depth per pixel do not hold.

Abstract

The rising popularity of immersive visual experiences has
increased interest in stereoscopic 3D video generation. De-
spite significant advances in video synthesis, creating 3D
videos remains challenging due to the relative scarcity of
3D video data. We propose a simple approach for trans-
forming a text-to-video generator into a video-to-stereo
generator. Given an input video, our framework automat-
ically produces the video frames from a shifted viewpoint,
enabling a compelling 3D effect. Prior and concurrent ap-
proaches for this task typically operate in multiple phases,
first estimating video disparity or depth, then warping the
video accordingly to produce a second view, and finally in-
painting the disoccluded regions. This approach inherently
fails when the scene involves specular surfaces or transpar-
ent objects. In such cases, single-layer disparity estima-
tion is insufficient, resulting in artifacts and incorrect pixel
shifts during warping. Our work bypasses these restric-
tions by directly synthesizing the new viewpoint, avoiding
any intermediate steps. This is achieved by leveraging a
pre-trained video model’s priors on geometry, object ma-

terials, optics, and semantics, without relying on external
geometry models or manually disentangling geometry from
the synthesis process. We demonstrate the advantages of
our approach in complex, real-world scenarios featuring
diverse object materials and compositions. See videos on
https://video-eye2eye.github.io/.

1. Introduction

Immersive viewing hardware—such as VR headsets and 3D
displays—is rapidly improving, offering users increasingly
high-quality 3D experiences. However, capturing high-
quality 3D content remains challenging and often requires
specialized equipment, limiting the availability of immer-
sive media. This generates a growing demand for methods
that can generate high-quality 3D content, such as stereo-
scopic video. Ultimately, we can envision a future where
any video content can be experienced in 3D regardless of
its original capture. Towards this goal, we address the prob-
lem of up-converting monocular 2D video to more immer-
sive stereoscopic 3D video, leveraging recent advances in
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generative video models.
The prevalent approach to mono-to-stereo video conver-

sion adopts a two-step process: they first estimate geometry
for an input video via monocular depth models, then use this
geometry to re-project pixels to a second view, inpainting
dis-occluded regions to generate a video for the second eye.
However, such warp-and-inpaint approaches have an inher-
ent restriction—they are inapplicable to scenes with reflec-
tions and complex light transport. Fundamentally, using a
disparity map to warp an image to a new viewpoint assumes
that there is a single, distinct depth at every input pixel. For
scenes that exhibit simple Lambertian reflectance, this as-
sumption largely holds true. However, for scenes with more
complex light transport—specular reflection, partial trans-
parency, etc.—we often cannot characterize each pixel with
a single depth. For instance, in Fig. 6, a person is viewed
through a glass window, thus the window’s pixels are a mix-
ture of the person and the objects reflected on the glass—
each at completely different (virtual) depths. To correctly
handle such cases, methods based on explicit pixel warping
would need to decompose the scene into multiple layers—
e.g., reflected and transmitted light—warp each separately,
then composite the results [35]. Without such handling,
these methods can produce physically implausible views,
for instance, where reflections appear pasted on a reflective
surface, rather than at their correct virtual depth. The effects
of such artifacts have been widely studied in cognitive sci-
ence, where they have been shown to affect the way shape,
material, and geometry are perceived [4, 30, 32, 52, 53].

We propose to address these limitations by directly pro-
ducing the output RGB view, sidestepping the need for ex-
plicit disparity estimation or pixel warping. We leverage re-
cent video diffusion models for this goal, as well as the ob-
servation that while full multi-camera 3D video datasets are
scarce, stereo videos captured from two-view setups are rel-
atively abundant online. Such videos represent ideal train-
ing data for mono-to-stereo methods, and allow us to learn
to directly produce the desired output in a way that opti-
mizes for the actual ground truth second-eye view, no mat-
ter how complex the underlying light transport is. We call
this method Eye2Eye.

Our direct approach yields superior performance over
warp-and-inpaint baselines in challenging real-world scenes
featuring specular or transparent surfaces and dynamic
lighting conditions. We validate these findings through a
user study as well as a stereo perception metric introduced
in [39].

In summary, our contributions are: (1) demonstrating,
for the first time, mono-to-stereo video generation of spec-
ular dynamic scenes; (2) showing how to effectivity lever-
age a pre-trained generative video model for this task, using
curated online stereo videos; and (3) providing quantitative
and qualitative evaluations via a user study and a perceptual

stereo metric that highlight the advantages of our approach
over existing warp-and-inpaint methods.

2. Related work

Multi-view video synthesis. Progress in Generative-AI
has been expanded to 3D generation, with trained image
and video models being repurposed for static and dynamic
multi-view generation. CAT3D [9] inflates an image dif-
fusion model to take an arbitrary number of frames of a
static scene as input, and to generate as output a 360◦ set
of views, from which a 3D reconstruction can be estimated
using off-the-shelf methods [15, 29]. A follow up work,
CAT4D [54] expandeds the method to dynamic scenes, but
as the base CAT3D model is an image model, it still lacks
motion prior and fails to handle complex motion. Other
work tackles scaling video-diffusion architectures to the dy-
namic 4D setting [19, 49, 54, 58]. As fully multi-view video
datasets are scarce, these methods often build largely on
synthetic data, static scenes and monocular videos, which
limits their performance on real-world videos. Our two-
view stereo setting allows us to use a dataset of real-world
online videos from [13], enabling stereo generation of arbi-
trarily complex videos in terms of scene-dynamics, camera
motion, and light conditions.

Mono-to-Stereo Conversion. Early mono-to-stereo con-
version methods primarily relied on motion parallax [59],
perceptual heuristics [14, 21, 46, 57], or user interaction
[24]. Deep3D [55] uses a CNN to predict each right video
frame from the left by first estimating a soft disparity map
and then compositing the output frame. These early ap-
proaches share a common limitation: the absence of a gen-
erative prior.

More recent mono-to-stereo synthesis methods employ
a multi-stage pipeline, involving: (1) estimating video dis-
parity (and temporally smoothing it), (2) using it to warp
frames to the output view, and (3) inpainting disoccluded
regions. Early works using this approach include [18, 50].
Recent methods following this pipeline build on top of gen-
erative diffusion models: StereoDiffusion [45] for images,
and SVG [7], StereoCrafter [60], and SpatialDreamer [25]
for videos. SVG leverages a pretrained text-to-video model
without any further training, by devising a specific inpaint-
ing scheme, while StereoCrafter and SpatialDreamer fine-
tune an image-to-video model, modifying it (1) to be video-
rather than image-conditioned, and (2) to inpaint left-right
dis-occlusion regions.

Our approach offers a key advantage over those
pipelines, as in many real-world scenarios a single-layered
disparity estimate is insufficient to represent scene geome-
try. While some progress on multi-layer flow prediction has
been recently made [51], correctly estimating layered video
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disparity remains an overlooked challenge. Instead, we di-
rectly leverage a pre-trained video model’s implicit, joint
priors on geometry, object materials, and light, helping to
alleviate this issue.

Novel view synthesis with reflections and specularities.
Another possible approach for stereo synthesis is to apply
a 3D video reconstruction pipeline and render stereo views
from it. A line of work focuses on such 3D video recon-
struction pipelines [20, 41, 47, 48]. Other work has focused
on improving the ability of 3D reconstruction methods to
render and reconstruct scenes with specular reflections, in-
cluding: (1) re-parameterizing outgoing radiance as a func-
tion of the reflected view direction [23, 26, 42, 44], (2) com-
bining 3D reconstruction with inverse graphics (simultane-
ously estimating material properties) [3, 12, 27, 36], (3) di-
rectly tracing reflection rays [43]. In the context of 3D video
reconstruction, a recent work incorporates physically-based
rendering into a Gaussian-splatting 3D video reconstruction
pipeline to handle specular reflections [8]. In contrast, our
approach leverages the implicit modeling capabilities of a
large pretrained video model, eliminating the need for ex-
plicit physics-based representations. Furthermore, existing
4D reconstruction pipelines rely heavily on the input video
to constrain the learned geometry and appearance, and often
fail when the input lacks sufficient information (for exam-
ple, when the camera motion is minimal, as demonstrated
in Fig. 6). These limitations make 3D video reconstruction
pipelines less robust for stereo generation.

SOTA predicted disparity Warped frameInput frame

Figure 2. Limitations of warp-and-inpaint approach for mono-
to-stereo video synthesis. Given an input video frame (left), we
use a state-of-the-art disparity estimation model [11] to compute
its disparity (middle), and use it to warp the original frame to
a new view (right). Since the predicted disparity map captures
only the surface of the table, without considering the reflection of
other objects off of it, the warped frame depicts incorrect reflection
(skewed diagonally instead of reflecting vertically). When viewed
in VR, the reflection on the table appears “flat”, as if it is a part
of the table. This demonstrates the fundamental limitation of the
common warp-and-inpaint approach for stereo view synthesis.

3. Preliminaries
3.1. Stereo geometry
The geometric relationship between corresponding points
in a stereo pair is governed by epipolar geometry. For a rec-
tified stereo setup with parallel camera projection planes, a
3D point (x, y, z) projects to image coordinates (uL, v) in
the left view and (uR, v) in the right view, where the hor-
izontal disparity d = uL − uR is inversely proportional to
depth: d = fb

z , where f is the focal length and b is the
baseline distance between cameras. In the case of specu-
lar surfaces, a single depth value z cannot be assigned to
each pixel, since the depth of the surface itself zsurface and
that of the reflected object zreflected-object may differ. Thus,
to correctly re-render the video from another view point,
the surface and the reflected content should shift according
to their depth as in the above equation: dsurface = fb

zsurface
,

dreflection = fb
zreflected-object

. Fig 2 demonstrates how warping pix-
els that have reflections only with dsurface distorts the ren-
dered image.

3.2. Diffusion models
A diffusion model learns to reverse a noising process. Given
a clean image x0, the forward noising process adds Gaus-
sian noise according to a variance schedule βt, producing
noisy samples xt =

√
αtx0 +

√
1− αtϵ, where αt =∏t

s=1(1 − βs) and ϵ ∼ N (0, I). The simplified diffusion
objective minimizes:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥22

]
(1)

When conditioned on additional inputs c, the model learns
the conditional distribution ϵθ(xt, t, c). During inference,
the model iteratively denoises random noise xT back to a
clean sample. We build our framework on top of Lumiere
[2], which is a cascaded video diffusion model.

Cascaded diffusion models consist of two components:
a base model that generates videos at low resolution, and
a spatial-super-resolution (SSR) model that upsamples low-
resolution outputs to a higher resolution. The SSR model is
a conditional diffusion model that is trained to denoise high
resolution videos conditioned on downsampled videos. At
inference time, the SSR model iteratively denoises Gaus-
sian noise into a high resolution video, conditioned on the
low-resolution video produced by the base model.

4. Method
Given a monocular input video V right, our goal is to synthe-
size its corresponding stereo pair by generating a left view
V left, as if captured by a camera horizontally shifted from
the original camera position by approximately human in-
terpupillary distance (roughly 6.5cm), as per the rectified
stereo geometry described in Section 3.
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“the inside of a brewery 
with tables and chairs”

“a white car is driving 
down a street in japan”

“a woman walks through 
a store fil led with shoes”

Filtered out

VR180 Filtering + CaptioningRectified Perspective

Figure 3. Data processing pipeline. We curate stereo VR180
footage captured with high-resolution cameras and stored in a
equirectangular format. Following Stereo4D [13], we rectify the
stereo videos and map the equirectangular format to perspective
videos. We filter out videos with large disparity using RAFT [40]
and caption the remaining videos with BLIP2 [22].

Our task presents two key challenges: (1) understanding
the video’s geometry and light transport sufficiently well to
determine how to transform the pixel content into the new
view, and (2) synthesizing realistic content for regions that
are occluded in the original view, but become visible in the
new viewpoint. Given that generative video diffusion mod-
els have been shown to capture priors on both scene geom-
etry and occluded content [6, 10, 17, 34], we propose to
leverage such models to jointly address both challenges, as
well as a stereo video dataset, containing left and right eye
viewpoints of dynamic, in-the-wild videos. Specifically,
we extend Lumiere [2], a cascaded text-to-video diffusion
model, and construct training data from [13], to address this
task.

While we maintain Lumiere’s two-stage process of low-
resolution generation followed by super-resolution, we
make two principal changes to adapt it to our task. First, our
model takes a video as input, in addition to text (rather than
text alone). Second, we find that Lumiere’s super-resolution
design is not suitable for stereo synthesis, leading us to de-
velop a different approach. We detail these modifications in
the following sections, as well as our stereo dataset collec-
tion and processing. We call our overall method Eye2Eye.

4.1. Low-resolution stereo generation
Our first step focuses on fine-tuning the base Lumiere model
ϕ(xt, t, c) (where t is the diffusion timestep and c is the text
conditioning) to produce left-from-right views. We do so
by modifying its architecture to accept additional condition-
ing channels in its first input convolution layer. The model
is trained to denoise the left view while being conditioned
on the clean right view, following the standard conditional
diffusion training formulation (as described in Section 3).
This results in a model that produces novel left views at
128-pixel resolution (Fig. 4 top left). We call this model

the base Eye2Eye generator and denote it by ϕ̃base. After
training, given an input down-sampled video, V right

↓ , and a
caption c, ϕ̃base produces a low resolution left-view video:

ϕ̃base(xT , T, V
right
↓ , c) = V left

base (2)

4.2. High-resolution stereo refinement
While the base stereo generator successfully creates left-
from-right views, achieving high-resolution stereo synthe-
sis presents additional challenges. Directly applying the
pre-trained Lumiere super-resolution (SSR) model to V left

base

would produce details inconsistent with the original input
video V right, as the SSR denoises Gaussian noise based
solely on V left

base. We experimented with modifying the SSR
model to be conditioned on the right view, but this resulted
in degraded quality, which we attribute to its fully convo-
lutional, simpler architecture compared to the base model.
Therefore, we take a different route and adapt the base
model for high-resolution left-from-right video synthesis.

Consider a pixel in a video with a resolution of 128×128
that has a disparity of d pixels between the original and
generated view. When generating a video at 512×512 res-
olution (4× higher), the disparity should scale proportion-
ally (4d) pixels to maintain the same real-world depth ef-
fect. However, we observe that when sampling from ϕ̃base

at different input resolutions, the pixel disparity remains at
d pixels rather than scaling with the resolution. This leads
to an undesirable effect: sampling at higher resolutions ef-
fectively reduces the perceived 3D depth in the stereo pairs,
as shown in Fig. 5, columns 2 and 3. This behavior is anal-
ogous to changing the scale of the disparity itself.

To address this issue, we instead fine-tune ϕ on high-
resolution crops of size 128×128 to learn correct-scale dis-
parity and inpainting (Fig. 4 top right). We observe that
although training on high-resolution crops indeed allows
high-resolution sampling with larger pixel shifts, this ap-
proach introduces its own challenge: small crops often con-
tain limited disparity variation and distant content. This
causes the model to develop a bias toward uniformly shift-
ing the input view (Fig. 5, column 1).

While simply bilinearly up-sampling V left
base yields the

correct disparity scale and stereo geometry, the model
trained on high resolution crops yields better quality in in-
painted areas or in areas where the disparity is large. To
combine the strengths of both models, we use them in a
two-stage inference pipeline, which exploits a fundamen-
tal property of diffusion models—early denoising steps es-
tablish global layout and structure, while later steps refine
details [28]. Specifically, we use ϕ̃base to produce a low-
resolution layout with correctly scaled disparity, and use
the model trained on crops as an Eye2Eye refiner model,
denoted by ϕ̃refiner. That is, our method:
1. generates an initial low-resolution left view video using

the base Eye2Eye generator, V left
base as in eq 2,
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“a white dog” “a woman looking out the window”
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 the window”“a white dog”

Figure 4. Eye2Eye mono-to-stereo pipeline. We leverage the pre-trained Lumiere cascaded text-to-video model, as well as a curated
dataset of rectified stereo pairs, to perform mono-to-stereo synthesis. We finetune two different copies of a base (low-resolution) pre-
trained Lumiere model, in two different contexts. For the first base model, we add additional input channels to condition the model
on an input right eye, and train the base Eye2Eye generator on downsampled, low-resolution 128×128 stereo pairs (top left). We call
the resulting trained model the base Eye2Eye generator model. We train the second model to be a refinement model with the same
conditioning mechanism, but instead trained on 128×128 crops from full, high-resolution images (bottom left). We call the resulting
model the Eye2Eye refiner model. The base Eye2Eye model models correct pixels disparity at a low resolution, and the Eye2Eye refiner
has better quality in inpainted areas or areas with large disparities. At inference time, our sampling process (right) combines both models’
strengths by first generating a low-resolution output from the base Eye2Eye model to establish appropriate stereo disparity for a compelling
3D effect, then noising and denoising it with the Eye2Eye refiner to achieve high visual quality.

2. upsamples this output to the target resolution and noises
the upsampled output,

xleft
t =

√
αt · V left

base↑ +
√
1− αt · ϵ

where αt is the diffusion noise schedule parameter as
described in Sec. 3.2,

3. denoises the noised upsampled-resolution video using
the stereo refiner model:

V left = ϕ̃refiner(x
left
t , t, V right, c)

In other words, we perform SDEdit [28] on V left
base ↑

with ϕ̃refiner. This combined approach preserves correct
scale disparity from the low-resolution generation while en-
abling high-resolution refinement of fine details and tex-
tures (Fig. 5, rightmost column). The result is a pipeline that
consistently balances stereo disparity with high-resolution
detail, effectively bridging the gap between training and in-
ference resolution.

4.3. Training dataset
We construct our training data from the Stereo4D [13]
dataset, which contains over 100k high-resolution, rectified
stereo videos capturing diverse scenes and moving objects.
As shown in Fig. 3, this dataset provides real-world video
data that naturally includes challenging cases such as re-
flective surfaces, which are difficult to simulate in synthetic

datasets. Following Stereo4D, we project VR180 videos to
rectified perspective videos of resolution 512×512. We fil-
ter out examples with excessively large disparities caused
by objects being too close to the camera, as these often lead
to stereo window violations [61] and are challenging for the
model to learn. Specifically, we compute optical flow be-
tween the left and right frames with RAFT [38, 40] to esti-
mate pixel disparities and discard videos where the disparity
exceeds a specified threshold (60 pixels). Additionally, we
use BLIP2 [22] to generate captions from the middle frame
of each video. During training, we sample 80 frames per
clip to align with Lumiere’s input video length.

5. Results
5.1. Baselines
The most prominent baseline for our approach is Stereo-
Crafter [60], which adopts a warp-and-inpaint approach
and trains an inpainting model specifically for handling
left-right disocclusions. Since StereoCrafter builds upon
Video-Stable-Diffusion, a different pretrained video diffu-
sion model than the one we use, we re-implement Stereo-
Crafter using Lumiere—the pretrained model utilized in our
method, in order to ensure a fair comparison between ap-
proaches. We fine-tune the low-resolution Lumiere model
specifically on warped views and subsequently employ the
Lumiere super-resolution stage combined with a blended
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Figure 5. Resolving training and inference gap. We ablate the
use of the two models in our pipeline, illustrating the training-
inference gap of each of them, and visualize the resulting anaglyph
and depth estimation (estimated using [40]) of their outputs. When
sampling from the Eye2Eye-refiner model (trained on crops with-
out any downsampling), far away content is still shifted by a large
amount (column 1). When sampling from the base Eye2Eye gen-
erator at a higher resolution than its training resolution, the scale
of the disparity and novel content in the frame reduces, weaken-
ing the 3D effect compared to sampling at the training resolution
(columns 2 and 3, in column 2 the outputs were upsampled). By
upsampling the outputs of the base stereo model and noising and
denoising it with the Eye2Eye-refiner model, we maintain both a
good depth perception from the base model and the stereo refiner’s
ability to generate high quality frames (column 4).

diffusion approach [1] to preserve details from the origi-
nal warped videos. We refer to this baseline as warp and
inpaint. See the appendix for more details.

We additionally include qualitative comparisons with
Deep3D [55], a deep CNN trained for mono-to-stereo video
prediction; and Dynamic Gaussian Marbles (DGM) [37], a
method for novel view synthesis of monocular videos.

5.2. Evaluation data
We assess our method on a held-out test set of 30 publicly
sourced videos, encompassing diverse scenes, camera mo-
tions, and dynamic content. These videos are chosen to fea-
ture complex lighting conditions and varied materials, in-
cluding specular surfaces that introduce challenges such as
reflections. Some of the videos are taken from the data pro-
vided in [56], which proposed a method to decompose the
different layers of reflected and refracted light. See a sam-
ple of the evaluation videos in Figure 7.

5.3. Qualitative comparisons
Figure 6 shows qualitative comparisons to the baselines.
Both the warp-and-inpaint baseline and StereoCrafter incor-
rectly shift scene content in areas with reflections or trans-
parencies. These methods struggle to handle layered struc-
tures, failing to accurately separate and shift objects with
reflections or transparencies.

In the top example, depth-warping methods (column b,
c) shift the upper portion of the building more than the lower
part. This occurs because the top is occluded by a transpar-
ent umbrella, and the single-layer disparity model assigns
it a larger disparity. This causes distortion and incorrect
3D effect: the top part of the building appears as close
to the viewer as the umbrella when viewed with red-cyan
anaglyph glasses or in VR. Similarly, in the bottom exam-
ple, the reflected distant pole is shifted too much, along with
the woman’s head.

In contrast, our results (column a) preserve the correct
depth layering by shifting each visible layers according to
its own disparity. The transparent umbrella is shifted more
than the building behind it, and the reflection of the pole
is shifted only slightly, while the woman’s head is shifted
more substantially, consistent with their relative depths.

DGM (column c) cannot inpaint missing content at oc-
clusion boundaries since it has no generative prior, lead-
ing to holes in the video frames such as white borders near
the people (top example) and along the left edge of the
frame (bottom example). Additionally, as it uses single-
layer depth estimation for geometry regularization, it also
suffers from the distortions and fails to correctly model the
geometry. Deep3D (column d) fails to produce a sufficient
3D effect—the output videos are almost identical to the in-
put ones in most cases.

5.4. Quantitative comparisons

User study. To evaluate the benefit of our direct synthe-
sis approach over the warp-and-inpaint approach, we con-
ducted a user study using a Two-alternative Forced Choice
(2AFC) protocol [16, 33]. Participants viewed two videos
side-by-side with VR headsets: our model’s output and
the warp and inpaint baseline’s output. Specifically, our
model’s and the warp and inpaint left view predictions were
presented to the participants’ left eyes, while the input right
video was presented to their right eyes.

Prior to the main comparison, participants were shown a
ground truth stereo pair featuring a large reflection along-
side a warp-and-inpaint result that does not account for re-
flection. This preliminary step ensured that participants un-
derstood the task and excluded those with binocular vision
dysfunctions (see the test examples in the supplemental ma-
terial). During the main task, participants were asked to de-
termine which video exhibited a more realistic 3D effect,
including in areas with reflections or transparent surfaces.
Overall, participants favored our videos 66% of the time
based on 239 judgments. To further statistically assess the
study’s results, we classified a video as favoring our method
if more than half of its votes were positive (each video re-
ceived between 5 and 15 votes). Out of 31 videos, 23 (about
74 %) met this criterion. Under the assumption of a 50%
chance for a positive majority, a binomial test produced a
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Figure 6. Qualitative Comparison. Our method successfully generates left from right views in complex scenarios where light is both
reflected on a transparent material and refracted through it. The warp-and-inpaint baseline, relying on a single-layer disparity prediction,
fails in such cases. For instance, in the top example, the top of the building appears as near as the transparent umbrella overlaying it (see
anaglyph), and the building is distorted (see output left eye). Our method, in contrast, successfully shifts the umbrella without shifting the
building behind it. In the bottom example, the pole reflected on the glass appears as near as the woman behind the window (see anaglyph);
in our result, the pole is almost not shifted, as it is far away. Dynamic Gaussian Marbles (DGM, c), a 4D reconstruction method, lacks
generative capabilities. Thus, their output left eye has white regions of missing content (see top example along the borders of the people,
and in the bottom example along the left edge of the frame). In addition, since DGM relies on metric depth estimation as a regularization, it
often fails to correctly model the geometry in complex scenarios—producing distortions similar to those of the warp-and-inpaint baseline
in the top example, and a “flat” output in the bottom example. Finally, Deep3D (d) generally fails to generate a sufficient 3D effect, as seen
in the anaglyph visualizations.

one-sided p-value of 0.0053 (and a two-sided p-value of
0.0107), indicating that the result is statistically significant
and unlikely to be due to chance.

iSQoE stereo perception metric We also evaluate our re-
sults using the recently proposed stereo perception metric,
iSQoE [39], which trained a model to assess stereoscopic
quality of experience (SQoE) of a stereo pair by aligning
it closely with human perceptual preferences. The authors
showed that iSQoE effectively evaluates different mono-
to-stereo conversion techniques. iSQoE is an image (not
a video) metric, and it is meaningful only when compar-
ing the same stereo pair generated through different pro-

cessing or conversion methods. Thus, to obtain per-video
preferences, we average the iSQoE scores across frames
and compare the mean scores between methods. Our ap-
proach achieves higher average scores on 84% of the videos
from our test set when compared to StereoCrafter, and 74%
when compared to our implemented warp-and-inpaint base-
line, supporting our approach’s superior performance. In-
terestingly, StereoCrafter performed worse than the warp-
and-inpaint baseline; we attribute this to the stronger pre-
trained model used in our implementation (i.e., Lumiere in
our warp-and-inpaint baseline vs. Stable-Video-Diffusion
[5] in StereoCrafter).
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Figure 7. Our generated stereo views. Our approach is particularly successful in complex scenarios involving reflective objects such as
glass doors or specular tables, where traditional methods often produce distortions. See videos in our website.

We note that we do not report reconstruction errors with
respect to the ground truth left view, since our method does
not directly control the disparity scale, making pixel-wise
comparisons unreliable.

6. Discussion and Conclusions

We presented a simple approach for video mono-to-stereo
conversion, highlighting complexities that were often over-
looked in prior and concurrent work. As video models con-

tinue to grow in size and training data, they not only produce
higher-quality outputs but also appear to implicitly approxi-
mate certain aspects of our physical world; our results high-
light these emerging capabilities. Our user study suggests
handling reflections in modern VR headsets would help in-
crease the realism of immersive experiences, encouraging
VR development and research to consider these nuances.
Nonetheless, an inherent limitation of our current approach
is that we do not control the baseline between the cam-
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eras, constraining the extent of the 3D effect. Future work
could explore methods for dynamically adjusting this base-
line, thereby offering more flexibility in creating immersive
stereo content.
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Photorealistic video generation with diffusion models, 2023.
4

[11] Wenbo Hu, Xiangjun Gao, Xiaoyu Li, Sijie Zhao, Xi-
aodong Cun, Yong Zhang, Long Quan, and Ying Shan.

DepthCrafter: Generating consistent long depth sequences
for open-world videos. arXiv preprint arXiv:2409.02095,
2024. 3, 11

[12] Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Song-
fang Han, Sai Bi, Xiaowei Zhou, Zexiang Xu, and Hao Su.
TensoIR: Tensorial Inverse Rendering. CVPR, 2023. 3

[13] Linyi Jin, Richard Tucker, Zhengqi Li, David Fouhey, Noah
Snavely, and Aleksander Holynski. Stereo4D: Learning
how things move in 3D from internet stereo videos. arXiv
preprint, 2024. 2, 4, 5

[14] Petr Kellnhofer, Thomas Leimkühler, Tobias Ritschel, Karol
Myszkowski, and Hans-Peter Seidel. What makes 2D-to-3D
stereo conversion perceptually plausible? In Proceedings
of the ACM SIGGRAPH Symposium on Applied Perception,
pages 59–66, New York, NY, USA, 2015. ACM. 2

[15] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3D gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 2

[16] Nicholas Kolkin, Jason Salavon, and Gregory
Shakhnarovich. Style transfer by relaxed optimal transport
and self-similarity. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10051–10060, 2019. 6

[17] Dan Kondratyuk, Lijun Yu, Xiuye Gu, José Lezama,
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8. Additional Details
8.1. Training details
We fine-tune Lumiere on a dataset of 100K clips from
Stereo4D as mentioned in Section 4.3 of the main paper. We
temporally subsample the videos into 80 frames at 16 fps
to match Lumiere’s pre-training temporal resolution. We
train the model for 120K steps with batch size 32 and learn-
ing rate 2 · 10−5. The original clips resolution is 512×512
pixels. To train the Eye2Eye base model, we additionally
downsample the frames spatially to 128×128 pixels. For
the Eye2Eye refiner, we randomly sample crops of 128 pix-
els.

8.2. Sampling hyper-parameters for our method
8.2.1. Base Eye2Eye sampling
We sample with 50 diffusion timesteps and without
classifier-free guidance. We sample from this model at a
resolution of 256 pixels, as we found that this resolution
best mitigates visual quality and 3D effect.

8.2.2. Eye2Eye refiner
We upsample the output of the base Eye2Eye model to
512×512 pixels resolution and noise it to diffusion timestep
t = 0.9. We then denoise it with 48 diffusion timesteps and
without classifier-free guidance

9. Baselines
9.1. Warp-and-inpaint implementation
For a fair comparison with the warp-and-inpaint approach,
we implement and train this baseline using the same pre-
trained model as in our method. We use the same dataset
described in 4.3 to fine tune the base Lumiere inpainting
model to inpaint left-right disocclusion masks. We use
[40] to estimate disparity of each pair of stereo frames,
V left, V right and obtain the disocclusion mask by comput-
ing left-right consistency of the disparity prediciton. At
training, the model is conditioned on the right video warped
according to the estimated disparity, V right

warped, and the cor-
responding disocclusion mask M , to denoise the left frame,
with the standard diffusion objective:

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t, V

right
↓warped,M, c)∥22

]
(3)

Here c is the text caption, xt =
√
αtV

left +
√
1− αtϵ, and

ϵ ∼ N (0, I). Denote by θ(xt, t, V
right
warped,M, c) this model

after training. At inference time, given a video V right, we
use SOTA monocular disparity estimation [11] to estimate
video disparity DV . As this estimation is scale and shift
invariant, we fit a scale and shift parameter to the dispar-
ity map to align it with the disparity of our outputs (we
first estimate the disparity of our outputs using [40]). We
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then forward-warp the frames using depth ordered softmax
splatting [31] and downsample the warped frames to obtain
V right
warped↓. The inpainting mask here are the pixel locations

that were not mapped onto by DV . We open and dilate the
mask to reduce temporal inconsistencies before feeding it
along with the downsampled right eye video to θ model, to
obtain a low resolution inpainted video:

θ(xT , T, V
right
warped↓,M, c) = V inpainted

base

For spatial super resolution, we use the pretrained Lumiere
SSR model and take a blended diffusion approach for main-
taining faithfulness to the original video. Specifically, the
input to the SSR model is the low resolution base inpainting
model output V inpainted

base , and at each timestep t, we blend
the predicted clean super-resolved output

x̂t
0(xt, t, V

inpainted
base )

with the high resolution warped right video

V right
warped = softmax z splatting(V,Dv)

according to the dissocclusion mask M :

x̂t
0 ←M · x̂0

t(xt, t, V
inpainted
base ) + (1−M) · V right

warped

This blending ensures that details in areas that appear in
the input right video are preserved in the super-resolved left
view. We use a the standard lumiere sampling of 256 and 32
diffusion timesteps for the base model and the SSR model,
respectively, and a classifier free guidance of 8.

9.2. Stereo-Crafter
We use the official Stereo-Crafter repository ttps://
github.com/TencentARC/StereoCrafter. For
the depth splatting stage, we scale and shift the predicted
disparity in the same way described in 9.1.

9.3. Deep3D
As the original paper implementation uses a deprecated
codebase, we turn to a more recent implementation found in
the link: https://github.com/HypoX64/Deep3D.
Their training data consists of 3D movies, which are typ-
ically processed in a different manner then our data—the
zero disparity plane is usually shited to increase human
comfort, making the RGB comparison difficult. We thus
encourage the viewer to use anaglyph glasses for these re-
sults.

9.4. Dynamic Gaussian marbles
We optimize the Dynamic Gaussian Marbles using the of-
ficial paper implementation https://github.com/
coltonstearns/dynamic-gaussian-marbles,
using their default real-world videos configuration. We ob-
served the optimizing the representation for the full number
of steps (100K) in this configuration diverges, and thus syn-
thesize stereo views from it after 40K steps.
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